Меню Рубрики

Генеалогический метод как универсальный метод изучения наследственности человека. Генеалогический метод изучения закономерностей наследования признаков человека Для чего используют генеалогический метод

1. Генеалогический



Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный
рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Как метод изучения генетики человека генеалогический метод стали применять только с начала XX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить.

Пробанд - лицо, с которого начинается составление родословной при генеалогическом анализе.

Сибс - один из детей, родившихся у одних и тех же родителей, по отношению к другим детям (например, брат или сестра).

2. Близнецовый

Этот метод заключается в изучении закономерностей наследования признаков в парах одно- и двуяйцевых близнецов. Он предложен в 1875 г. Гальтоном первоначально для оценки роли наследственности и среды в развитии психических свойств человека. В настоящее время этот метод широко применяют в изучении наследственности и изменчивости у человека для определения соотносительной роли наследственности и среды в формировании различных признаков, как нормальных, так и патологических. Он позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов. Монозиготные близнецы, развивающиеся из одной оплодотворенной яйцеклетки, генетически идентичны, так как имеют 100% общих генов. Поэтому среди монозиготных близнецов наблюдается высокий процент конкордантных пар, в которых признак развивается у обоих близнецов. Сравнение монозиготных близнецов, воспитывающихся в разных условиях постэмбрионального периода, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды. По этим признакам между близнецами наблюдается дискордантность, т.е. различия. Напротив, сохранение сходства между близнецами, несмотря на различия условий их существования, свидетельствует о наследственной обусловленности признака.

3. Популяционно-статистический

С помощью популяционно-статистического метода изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. Существенным моментом при использовании этого метода является статистическая обработка получаемых данных. Этим методом можно рассчитать частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в формировании фенотипического полиморфизма человека по нормальным признакам, а также в возникновении болезней, особенно с наследственной предрасположенностью. Этот метод используют и для выяснения значения генетических факторов в антропогенезе, в частности в расообразовании.

4. Дерматоглифический


В 1892г. Ф.Гальтоном в качестве одного из методов исследования человека был предложен метод изучения кожных гребешковых узоров пальцев и ладоней, а также сгибательных ладонных борозд. Он установил, что указанные узоры являются индивидуальной характеристикой человека и не изменяются в течении жизни.В настоящее время установлена наследственная обусловленность кожных узоров, хотя характер наследования окончательно не выяснен.вероятно, признак наследуется по полигенному типу.Дерматоглифические исследования важны при идентификации близнецов. Изучение людей с хромосомными заболеваниями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней. Менее изучены дерматоглифические изменения при генных болезнях.В основном эти методы генетики человека применяют с целью установления отцовства.

Изучение отпечатков кожного рисунка ладоней и стоп. При существующих индивидуальных различиях в отпечатках пальцев, обусловленных особенностями развития индивида, различают, несколько основных классов их. Своеобразные изменения отпечатков пальцев и узора ладони отмечены при ряде наследственно-дегенеративных заболеваний нервной системы. Характерным для болезни Дауна является обезьянья (четырехпалая) складка, представляющая линию, проходящую через всю ладонь в поперечном направлении. В настоящее время метод применяется в основном в судебной медицине.


5. Биохимический

Наследственные заболевания, которые обусловлены генными мутациями, изменяющими структуру или скорость синтеза белков, обычно сопровождаются нарушением углеводного, белкового, липидного и других типов обмена веществ. Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последовательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, ? гемоглобинозов. Так, при серповидноклеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).
В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов, что особенно важно при медико-генетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (рецессивный мутантный ген; у гомозигот нарушается обмен аминокислоты фенилаланина, что приводит к умственной отсталости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носительство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.

6. Цитогенетический

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями. Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом: 22 пар аутосом и одной пары половых хромосом (XX ? у женщин, XY ? у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека. Цитологический контроль необходим для диагностики хромосомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского? Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови? хроническому миелолейкозу.
При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барри, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.
Выявление многих наследственных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

7.Гибридизация соматический клеток

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что компенсирует невозможность применения к человеку гибридологического анализа. Эти методы, основанные на размножении этих клеток в искусственных условиях, анализировать генетические процессы в отдельных клетках организма, и благодаря полноценности генетического материала использовать их для изучения генетических закономерностей целого организма.

Гибридные клетки, содержащие 2 полных генома, при делении обычно «теряют» хромосомы предпочтительно одного из видов. Таким образом, можно получать клетки с желаемым набором хромосом, что дает возможность изучать сцепление генов и их локализацию в определенных хромосомах.
Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном периоде.

8.Метод моделирования

Изучает болезни человека на животных, которые могут болеть этими заболеваниями. В основе лежит закон Вавилова о гомологичных рядах наследственной изменчивости, например, гемофилию, сцепленную с полом, можно изучать на собаках, эпилепсию – на кроликах, сахарный диабет, мышечную дистрофию – на крысах, незаращение губы и неба – на мышах
Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.
В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические). Биологические модели воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких моделей - искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической модели применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические модели широко используются в генетике, физиологии, фармакологии.

9.Иммуногенетический

Иммунологический (серологический) метод включает исследование сыворотки крови, а также других биологических субстратов для выявления антител и антигенов.
Различают серологические реакции и иммунологические методы с применением физических и химических меток. Серологические реакции основаны на взаимодействии антител с антигенами и регистрации сопровождающих его феноменов (агглютинация, преципитация, лизис). В иммунологических методах применяют физические и химические метки, включающиеся в формируемый комплекс «антиген-антитело», позволяя регистрировать образование этого комплекса.
Классическая серодиагностика основана на определении антител к выявленному или предполагаемому возбудителю. Положительный результат реакции свидетельствует о наличии в исследуемой сыворотке крови антител к антигенам возбудителя, отрицательный результат указывает на отсутствие таковых.
Серологические реакции полуколичественны и позволяют определить титр антител, т.е. максимальное разведение исследуемой сыворотки, в котором ещё наблюдается положительный результат.
Обнаружение в исследуемой сыворотке крови антител к возбудителю ряда инфекционных болезней недостаточно для постановки диагноза, поскольку оно может отражать наличие постинфекционного или поствакцинального иммунитета. Именно поэтому исследуют парные сыворотки - взятую в первые дни болезни и через 7-10 дней. В этом случае оценивают нарастание титра антител. Диагностически значимое нарастание титра антител в исследуемой сыворотке крови относительно первоначального уровня - 4 раза и более. Этот феномен называют сероконверсией.
При экзотических инфекционных болезнях, а также при гепатитах, ВИЧ-инфекции и некоторых других заболеваниях сам факт определения антител свидетельствует об инфицированное™ пациента и имеет диагностическое значение.


В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных. Родословные человека составлялись на протяжении многих столетий в отношении царствующих семейств в Европе и Азии.

Как метод изучения генетики человека генеалогический метод стали применять только с начала XX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - арабскими.

Рис. 6.24. Условные обозначения при составлении родословных (по Г. Юсту)

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.

Родословные при аутосомно-доминантном наследовании. Для аутосомного типа наследования в целом характерна равная вероятность встречаемости данного признака как у мужчин, так и у женщин. Это обусловлено одинаковой двойной дозой генов, расположенных в аутосомах у всех представителей вида и получаемых от обоих родителей, и зависимостью развивающегося признака от характера взаимодействия аллельных генов.

При доминировании признака в потомстве родительской пары, где хотя бы один родитель является его носителем, он проявляется с большей или меньшей вероятностью в зависимости от генетической конституции родителей (рис. 6.25).

Рис. 6.25. Вероятность появления потомков с доминантным признаком от различных супружеских пар (/-III )

Если анализируется признак, не влияющий на жизнеспособность организма, то носители доминантного признака могут быть как гомо-, так и гетерозиготами. В случае доминантного наследования какого-то патологического признака (заболевания) гомозиготы, как правило, нежизнеспособны, а носители этого признака - гетерозиготы.

Таким образом, при аутосомно-доминантном наследовании признак может встречаться в равной мере у мужчин и у женщин и прослеживается при достаточном по численности потомстве в каждом поколении по вертикали. Анализируя родословные, необходимо помнить о возможности неполного пенетрирования доминантного аллеля, обусловленной взаимодействием генов или факторами среды. Показатель пенетрантности может быть вычислен как отношение фактического числа носителей признака к числу ожидаемых носителей этого признака в данной семье. Необходимо также помнить, что некоторые заболевания проявляются не сразу с момента рождения ребенка. Многие болезни, наследуемые по доминантному типу, развиваются лишь в определенном возрасте. Так, хорея Гентингтона клинически проявляется к 35-40 годам, поздно проявляется и поликистоз почек. Поэтому при прогнозировании подобных заболеваний в расчет не принимаются братья и сестры, не достигшие критического возраста.

Первое описание родословной с аутосомно-доминантным типом наследования аномалии у человека было дано в 1905 г. В ней прослеживается передача в ряду поколений брахидактилии (короткопалости). На рис. 6.26 приведена родословная с этой аномалией. На рис. 6.27 изображена родословная с ретинобластомой в случае неполной пенетрантности.

Родословные при аутосомно-рецессивном наследовании. Рецессивные признаки проявляются фенотипически лишь у гомозигот по рецессивным аллелям. Эти признаки, как правило, обнаруживаются у потомков фенотипически нормальных родителей - носителей рецессивных аллелей. Вероятность появления рецессивного потомства в этом случае равна 25%. Если один из родителей имеет рецессивный признак, то вероятность проявления его в потомстве будет зависеть от генотипа другого родителя. У рецессивных родителей все потомство унаследует соответствующий рецессивный признак (рис. 6.28).

Рис. 6.26. Родословная (А ) при аутосомно-доминантном типе наследования (брахидактилия - Б )

Для родословных при аутосомно-рецессивном типе наследования характерно, что признак проявляется далеко не в каждом поколении. Чаще всего рецессивное потомство появляется у родителей с доминантным признаком, причем вероятность появления такого потомства возрастает в близкородственных браках, где оба родителя могут являться носителями одного и того же рецессивного аллеля, полученного от общего предка. Примером аутосомно-рецессивного наследования является родословная семьи с псевдогипертрофической прогрессивной миопатией, в которой часты близкородственные браки (рис. 6.29). Обращает внимание распространение заболевания в последнем поколении по горизонтали.

Рис. 6.27. Родословная с ретинобластомой в случае неполной пенетрантности


Рис. 6.28. Вероятность появления потомков с рецессивным признаком

от различных супружеских пар (I-IV )

Родословные при доминантном Х-сцепленном наследовании признака. Гены, расположенные в Х-хромосоме и не имеющие аллелей в Y-хромосоме, представлены в генотипах мужчин и женщин в разных дозах. Женщина получает две свои Х-хромосомы и соответствующие гены как от отца, так и от матери, а мужчина наследует свою единственную Х-хромосому только от матери. Развитие соответствующего признака у мужчин определяется единственным аллелем, присутствующим в его генотипе, а у женщин он является результатом взаимодействия двух аллельных генов. В связи с этим признаки, наследуемые по Х-сцепленному типу, встречаются в популяции с разной вероятностью у мужского и женского пола.

При доминантном Х-сцепленном наследовании признак чаще встречается у женщин в связи с большей возможностью получения ими соответствующего аллеля либо от отца, либо от матери. Мужчины могут наследовать этот признак только от матери. Женщины с доминантным признаком передают его в равной степени дочерям и сыновьям, а мужчины - только дочерям. Сыновья никогда не наследуют от отцов доминантного Х-сцепленного признака.

Рис. 6.29. Родословная при аутосомно-рецессивном типе наследования (псевдогипертрофическая прогрессирующая миопатия)

Примером такого типа наследования служит описанная в 1925 г. родословная с фолликулярным кератозом - кожным заболеванием, сопровождающимся потерей ресниц, бровей, волос на голове (рис. 6.30). Характерным является более тяжелое течение заболевания у гемизиготных мужчин, чем у женщин, которые чаще всего являются гетерозиготами.

При некоторых заболеваниях наблюдается гибель мужчин-гемизигот на ранних стадиях онтогенеза. Тогда в родословных среди пораженных должны быть только женщины, в потомстве которых отношение пораженных дочерей, здоровых дочерей и здоровых сыновей равно 1:1:1. Мужские доминантные гемизиготы, не погибающие на очень ранних стадиях развития, обнаруживаются в самопроизвольных абортах или среди мертворожденных. Такими особенностями наследования у человека характеризуется пигментный дерматоз.

Родословные при рецессивном Х-сцепленном наследовании признаков. Характерной особенностью родословных при данном типе наследования является преимущественное проявление признака у гемизиготных мужчин, которые наследуют его от матерей с доминантным фенотипом, являющихся носительницами рецессивного аллеля. Как правило, признак наследуется мужчинами через поколение от деда по материнской линии к внуку. У женщин он проявляется лишь в гомозиготном состоянии, вероятность чего возрастает при близкородственных браках.

Наиболее известным примером рецессивного Х-сцепленного наследования является гемофилия. Наследование гемофилии типа А представлено в родословной потомков английской королевы Виктории (рис. 6.31).

Рис. 6.30. Родословная при Х-сцепленном доминантном типе наследования (фолликулярный кератоз)

Рис. 6.31. Родословная при Х-сцепленном рецессивном типе наследования (гемофилия типа А)

Другим примером наследования по данному типу является дальтонизм - определенная форма нарушения цветоощущения.

Родословные при Y-сцепленном наследовании. Наличие Y-хромосомы только у представителей мужского пола объясняет особенности Y-сцепленного, или голандриче-ского, наследования признака, который обнаруживается лишь у мужчин и передается по мужской линии из поколения в поколение от отца к сыну.

Рис. 6.32. Родословная при Y-сцепленном (голандрическом) типе наследования

Одним из признаков, Y-сцепленное наследование которого у человека все еще обсуждается, является гипертрихоз ушной раковины, или наличие волос на внешнем крае ушной раковины. Предполагают, что в коротком плече Y-хромосомы кроме этого гена находятся гены, определяющие мужской пол. В 1955 г. у мыши описан определяемый Y-хромосомой трансплантационный антиген, названный HY. Возможно, он является одним из факторов половой дифференцировки мужских гонад, клетки которых имеют рецепторы, связывающие этот антиген. Связанный с рецептором антиген активизирует развитие гонады по мужскому типу (см. разд. 3.6.5.2; 6.1.2). Этот антиген в процессе эволюции остался почти неизменным и встречается в организме многих видов животных, в том числе и человека. Таким образом, наследование способности к развитию гонад по мужскому типу определяется голандрическим геном, расположенным в Y-хромосоме (рис. 6.32).

Одним из универсальных и наиболее часто используемых методов в генетике человека является генеалогический.

Генеалогический метод - составление родословных и исследования наследования определенных признак ряде поколений.

Этот метод позволяет решить следующие теоретические и прикладные проблемы:

Есть исследуемая признак наследственной (при наличии ее у родственников)

Тип и характер наследования (доминантный или рецессивный, аутосомно или сцепленное с полом)

Зиготность лиц родословной (гетеро- или гомозиготные)

Частота или вероятность фенотипического проявления гена;

Вероятность рождения ребенка с наследственной патологией.

Генеалогический метод предусматривает следующие этапы исследования: сбор данных о всех родственников обследуемого, составление родословной, анализ родословной и выводы.

Сбор данных о всех родственников обследуемого

Родословная, как правило, составляют по одному или нескольким признакам. В зависимости от цели исследования родословная может быть полным или частичным, однако лучше сделать наиболее полный родословную по восходящим, нисходящим и боковым направлениям. Сложность сбора данных заключается в том, что обследуемый носитель признака (пробанд) должен хорошо знать своих родственников и состояние их здоровья по линии матери и отца не менее в трех поколениях, случается очень редко. Однако опрос, как правило, недостаточно. Некоторым членам родословной приходится назначать полное медицинское обследование для уточнения состояния их здоровья.

составление родословной

Для составления родословных используют условные обозначения (рис. 3.1).

Рис. 3.1.

Необходимо придерживаться определенных правил: составление родословной начинают с пробанда, каждое поколение слева нумеруют римскими цифрами, символы, обозначающие особей одного поколения, располагают по горизонтали и нумеруют арабскими цифрами в порядке их рождения. Основой родословной является пробанд, с которого начинают генетическое исследование семьи.

Анализ родословной. Прежде всего определяют природу исследуемого признака. Если этот признак проявляется в ряде поколений, то можно считать, что она имеет наследственную природу. После этого необходимо определить тип наследования признака. Для этого используют приемы генетического анализа, а также различные статистические методы обработки данных многих родословных.

Генетический анализ родословных позволяет выявить простые типы наследования признаков - аутосомно-доминант-ный, аутосомно-рецессивный и сцепленный с полом.

Аутосомно-доминантный тип наследования характеризуется тем, что ген исследуемого признака содержится в определенной аутосоме и проявляется как в гомозиготном, так и в гетерозиготном состоянии. В родословной его определяют по следующим свойствам: исследуемая признак имеется в каждом поколении независимо от пола, проявление признака наблюдается также по горизонтали - у братьев и сестер (рис. 3.2).

Рис. 3.2. Родовид с аутосомно-доминантным типом наследования (брахидактилия, или короткопалисть)

В зависимости от зиготности родителей за аллелями, которые контролируют признак, рождения детей с аутосомно-доминантным признаком может иметь такую вероятность:

100%, если хотя бы один из родителей гомозиготный по доминантному аллелю;

75%, если оба родителя гетерозиготные;

50%, если один из родителей гетерозиготы, а другой - гомозиготный по рецессивному аллелю.

Аутосомно-доминантные признаки отчетливо проявляются лишь при условии гомозиготности. В гетерозигот имеющийся промежуточный фенотип по исследуемой признаку. Если это болезнь, то она в случае гетерозиготности может проявляться не в каждом поколении.

По аутосомно-рецессивного типа наследования ген исследуемого признака расположен в аутосоме, а проявляет свое действие только в гомозиготном состоянии. Этот тип наследования характеризуется следующими особенностями: исследуемая признак имеется не в каждом поколении, ребенок с признаком может родиться у родителей, у которых она отсутствует (гетерозиготные родители), признак встречается с одинаковой частотой независимо от пола и наблюдается по горизонтали (рис, 3.3).

Рис. 3.3. Родовид с аутосомно-рецессивным типом наследования (альбинизм)

Вероятность наследования аутосомно-рецессивного признака в зависимости от зиготности родителей за аллелями, которые контролируют признак, может быть такой:

25%, если оба родителя гетерозиготные;

50%, если один из родителей гетерозиготы, а другой гомозиготный по этому рецессивным геном;

100%, если оба родителя гомозиготные по рецессивному аллелю.

В случае наследственной болезни аутосомно-рецессивного типа вероятность наследования составляет 25%. Такие больные или не доживают до наступления половой зрелости, или не женятся.

Наследование, сцепленное с полом, может быть Х-сцепленным доминантным, Х-сцепленным рецессивным и В-сцепленным. Это означает, что ген, контролирующий изучаемый признак, содержится в половых хромосомах - X или У.

1. Х-сцепленный доминантный тип наследования. Он обладает следующими свойствами: женщины с таким признаком в два раза больше, чем мужчин; признак проявляется в каждом поколении; отец-носитель признака передает ее всем дочерям, а сыновьям не передает его; мать-носитель признака может передать ее половине своих детей независимо от пола; у детей признак окажется тогда, когда ее нести хотя бы один из родителей; дети родителей, лишенных признаки, тоже без нее. Примером такого признака может быть коричневую окраску эмали зубов (рис. 3.4).

Рис. 3.4. Родовид с Х-сцепленным доминантным типом наследования (коричневую окраску эмали зубов)

2. Х-сцепленный рецессивный тип наследования. Он характеризуется следующими свойствами: признак имеется не в каждом поколении; ребенок с признаком может родиться у родителей, лишенных ее, признак проявляется преимущественно у мужчин и, как правило, по горизонтали; отец, лишенный признаки, не является носителем аллеля этого признака и не передает ее дочерям.

Если женятся женщина, лишенная признаки, и человек с признаком, то все их дети будут без признака. Дочери получат от отца Х-хромосому с геном признака (рецессивного) и будут гетерозиготными носителями, так вторую Х-хромосому (с доминантным геном) они получат от матери.

У мужчины без признака и женщины-носителя аллеля признаки вероятность рождения мальчика с признаком составляет 50% от всех ребят и 25% от всех детей.

Вероятность рождения девочек с признаком очень мала, и это возможно только тогда, когда отец имеет признак, а иметь гетерозиготы носитель гена признаки. При этом половина девушек будет с признаком, а вторая половина будет нести аллель в гетерозиготном состоянии.

Классическим примером наследования признаков по Х-сцепленным рецессивным типом может быть болезнь гемофилия, которая вызывает усиленные кровотечения из-за недостатка в организме факторов свертывания крови (рис. 3.5).

Рис. 3.5. Родовид с Х-сцепленным рецессивным типом наследования (гемофилия)

3. В-сцепленное наследования или голандричне. Оно свойственно только мужскому полу. Y-хромосома человека содержит совсем немного генов, которые передаются от отца только сыновьям. При этом признак присутствует во всех поколениях и у всех мужчин. Примером голандричного наследования может быть наследования гипертрихоза (наличие волос по краю ушных раковин (рис. 3.6).

Рис. 3.6. Родовид с У-сцепленным типом наследования (гипертрихоз)

Генетический метод можно использовать также при диагностировании болезней с наследственной предрасположенностью, наследование которых подчинено закону Менделя.


Генеалогический метод

Типы наследования и формы проявления генетических задатков у человека весьма многообразны и для дифференциации между ними требуются специальные методы анализа, в первую очередь – генеалогический, предложенный Ф. Гальтоном.

Генеалогический метод или изучение родословных предусматривает прослеживание признака в семье или роду с указанием типа родственных связей между членами родословной. В медицинской генетике этот метод обычно называют клинико-генеалогическим, поскольку речь идет о наблюдении патологических признаков с помощью приёмов клинического обследования. Генеалогический метод относится к наиболее универсальным методам в генетике человека. Он широко применяется при решении теоретических и практических проблем:

1) для установления наследственного характера признака,

2) при определении типа наследования и пенетрантности генотипа,

3) выявление сцепления генов и картирование хромосом,

4) при изучении интенсивности мутационного процесса,

5) при расшифровке механизмов взаимодействия генов,

6) при медико-генетическом консультировании.

Суть генеалогического метода сводится к выяснению родственных связей и прослеживанию признака среди близких и дальних прямых и непрямых родственников. Технически он складывается из двух этапов: составления родословных и генеалогического анализа.

Составление родословной

Сбор сведений о семье начинается с пробанда, которым называется лицо, первым попавшее в поле зрения исследователя.

Дети одной родительской пары (родные братья и сестры) называются сибсами. Семьей в узком смысле, или ядерной семьей, называют родительскую пару и их детей. Более широкий круг кровных родственников лучше обозначать термином «род». Чем больше поколений вовлекается в родословную, тем она обширнее. Это влечёт за собой неточность полученных сведений и, следовательно, неточность родословной в целом. Часто люди не знают даже числа своих двоюродных братьев и сестер, не говоря уже о каких-то признаках у них и их детей.

Для наглядности готовят графическое изображение родословной. Для этого обычно пользуются стандартными символами. Если рассматриваемых признаков в родословной много, то можно прибегать к буквенным или штриховым различиям внутри символов. Схема родословной обязательно сопровождается описанием обозначений под рисунком – легендой, что исключает возможность неправильных истолкований.

Генеалогический анализ

Целью генеалогического анализа является установление генетических закономерностей.

1 этап – установление наследственного характера признака. Если в родословной встречается один и тот же признак несколько раз, то можно думать о наследственной его природе. Однако надо прежде всего исключить возможность экзогенного накопления случаев в семье или роду. Например, если один и тот же патогенный фактор действовал на женщину во время всех беременностей, то у нее могут родиться несколько детей с одинаковыми аномалиями. Или же какой-то фактор действовал на многих членов семьи, необходимо сличить действие сходных внешних факторов. С помощью генеалогического метода были описаны все наследственные болезни.

2 этап – установление типа наследования и пенетрантности гена. Для этого используют принципы как генетического анализа, так и статистические методы обработки данных из родословной.

3 этап – определение групп сцепления и картирования хромосом, до недавнего времени основывающегося только на генеалогическом методе. Выясняют сцепленные признаки и процесс кроссинговера. Этому способствуют разработанные математические методы.

4 этап – изучение мутационного процесса. Он применяется в трех направлениях: при изучении механизмов возникновения мутаций, интенсивности мутационного процесса и факторов, вызывающих мутации. Особенно широко генеалогический метод применяется при изучении спонтанных мутаций, когда надо различать «спорадически» возникшие случаи от «семейных».

5 этап – анализ взаимодействия генов в клинической генетике был сделан С. Н. Давиденковым (1934, 1947) по анализу полиморфизма заболеваний нервной системы.

6 этап – в медико-генетическом консультировании для составления прогноза без генеалогического метода обойтись нельзя. Выясняют гомо- или гетерозиготность родителей и рассматривают вероятность рождения детей с теми или иными признаками.

Близнецовый метод исследования

Исследование близнецов – один из основных методов генетики человека. Существуют однояйцевые близнецы, возникающие из одной яйцеклетки, оплодотворенной одним сперматозоидом. Возникают они из-за разделения зиготы на два генетически идентичных друг другу и всегда однополых зародыша.

Разнояйцовые близнецы развиваются из разных яйцеклеток, оплодотворенных разными сперматозоидами. Генетически они различаются как братья и сестры одних родителей.

При помощи близнецового метода можно изучить:

1) Роль наследственности и среды в формировании физиологических и патологических особенностей организма. В частности, изучение наследственной передачи людьми некоторых болезней. Изучение экспрессивности и пенетрантности генов, вызывающих наследственные заболевания.

2) Конкретные факторы, усиливающие или ослабляющие влияние внешней среды.

3) Корреляцию признаков и функций.

Особенно важна роль близнецового метода в изучении проблемы «генотип и среда».

Сравнивают обычно три группы близнецов: ДБ в одинаковых условиях, ОБ в одинаковых условиях, ОБ в разных условиях.

При изучении близнецов определяют частоту, степень совпадения (конкордантности) тех или иных признаков.

При изучении роли наследственности в происхождении того или иного признака производят расчет по формуле К. Хольцингера.

Коэффициент наследуемости - Н

Н= % сходства ОБ - % сходства РБ

100 - % сходства РБ

При Н=1 вся изменчивость в популяции обусловлена наследственностью.

При Н=0 вся изменчивость вызвана средовыми факторами. Влияние среды С выражается формулой:

где Н – коэффициент наследуемости. Например, конкордантность монозиготных (однояйцевых) близнецов 3%.

Тогда Н = 67 – 3 = 64 = 0,7 или 70 %. С = 100 – 70 = 30%

Итак, данный признак на 70% обусловлен наследственностью, а на 30% - влиянием факторов внешней среды.

Другой пример. Группы крови по системе АВО у ОБ =100%, т.е. полностью зависит от наследственности.

Частота совпадения групп крови и некоторых заболеваний у близнецов (в %)

Признаки или болезни

группы крови АВО
корь
коклюш
шизофрения
свинка
эпилепсия
Врожденный стеноз привратника

Метод дерматоглифики

Это наука, изучающая наследственную обусловленность рисунков, которые образуют линии кожи на кончиках пальцев, ладонях и подошвах человека.

Оказалось, что у каждого народа, у каждой расы, у каждого человека рисунки имеют свои особенности, и на ладонях они строго индивидуальны. На это впервые обратил внимание Ф. Гальтон, который предложил английской уголовной полиции по отпечаткам пальцев идентифицировать преступников.

Дерматоглифические исследования имеют важное значение в криминалистике, в определении зиготности близнецов, в диагностике ряда наследственных заболеваний, а так же в отдельных случаях спорного отцовства.

Ладонный рельеф очень сложен. В нем выделяют ряд полей, подушечек и ладонных линий. Подушечек на ладони 11, их делят на 3 группы:

1) пять концевых (эпликальных) подушечек на концевых фалангах пальцев.

2) четыре межпальцевые подушечки, располагаются против межпальцевых промежутков.

3) две ладонные проксимальные подушечки тенар и гипотенар. У основания большого пальца – тенар, у противоположного края ладони - гипотенар.

На наиболее возвышенных частях подушечек заметны кожные гребешки. Это линейные утолщения эпидермиса, которые представляют собой модифицированные чешуйки кожи. Кожные гребешки идут потоками, как на ладонях, так и на пальцевых подушечках. Точки встречи этих потоков образуют трирадиусы или дельты.

Гребешковые узоры обычно изучают под лупой. Отпечатки узоров, при помощи типографской краски, делают на чистой белой, лучше мелованной, бумаге или целлофане. Как на кончиках пальцев, так и на ладонных возвышениях могут наблюдаться различные папиллярные узоры в виде завитков, петель и дуг, открытых в ульпарную или радиальную стороны. На тенаре и гипотенаре чаще бывают дуги. На средней и основной фалангах пальцев гребешковые линии идут поперек пальцев, образуя различные узоры – прямые, серповидные, волнообразные, дугообразные и их сочетания. В среднем на одном пальце бывают 15-20 гребешков.

Рисунок ладони:

1 – поперечная проксимальная борозда, линия прижатия 4 пальцев

2 - поперечная средняя борозда, линия прижатия 3 пальцев

3 – поперечная дистальная борозда, линия прижатия 2 пальцев

4 – борозда большого пальца

5 – продольная срединная борозда от запястья к основанию 3го пальца

6 – продольная промежуточная борозда от запястья к основанию 4го пальца

7 – продольная ульнарная борозда, от запястья к основанию 5го пальца

1 – синдром Патау

2 – синдром Дауна

3 – синдром Шерешевского-Тернера

4 – норма

5 – синдром Клайнфельтера

При изучении кожного рельефа ладони исследуют:

1) Ход главных ладонных линий А, В, С, Д 1,2,3,4,5,6,7.

2) Ладонные узоры на тенаре и гипотенар.

3) Пальцевые узоры (форму узоров, гребневый счет)

4) Осевые трирадиусы.

Аналогичные исследования проводят и на подошвах ног. Направление главной ладонной линии Д у родителей и их детей одинаковое.

Изучение больных с хромосомными болезнями (болезнь Дауна, синдром Клайнфельтера) показало, что у них меняется не только рисунок пальцевых и ладонных узоров, но и характер основных сгибательных борозд на коже ладоней.

Несколько меньшую выраженность имеют дерматоглифические отклонения у больных с такими дефектами развития, как врожденные пороки сердца и магистральных сосудов, незаращения мягкого и твердого неба, верхней губы и т.д.

Установлены изменения в характере пальцевых и ладонных узоров при проказе, шизофрении, сахарном диабете, раке, ревматизме, полиомиелите и других заболеваниях.

Цитогенетический метод

Этот метод позволяет с помощью микроскопа исследовать структуры клетки – хромосомы. С помощью метода микроскопии изучен кариотип организма человека (хромосомный набор клеток организма). Установлено, что многие заболевания и дефекты развития связаны с нарушением числа хромосом и их строения. Этот метод позволяет изучить также действие мутагенов на состав и строение хромосом. Цитогенетический метод связан с временными культурами тканей (обычно лейкоцитов) и получением метафазных ядер с укороченными, утолщенными хромосомами, деление которых останавливают на стадии метафазной пластинки колхицином. Если в кариотипе изучаются половые хромосомы, то этот метод позволяет исследовать половой хроматин в соматических клетках.

Гибридизация соматических клеток

Гибридные клетки обладают определенными свойствами, позволяющими определять локализацию гена или сцепление гена. Потеря хромосом человека из некоторых типов гибридных клеток позволяет получать клоны с отсутствием определенной хромосомы. Наиболее употребительны гибриды соматических клеток человек – мышь.

Прослеживание за наличием биохимического генетического маркера в гибридных клонах по мере элиминации хромосом человека может привести к обнаружению локализации гена, если признак исчезает из клеток, как только они меняются определенными хромосомами. Цитогенетический анализ большого числа клонов и сопоставления результатов с присутствием большого числа генетических маркеров позволяет подметить сцепленные гены и их локализацию. Дополнительно используют информацию, при использовании клонов от инвалидов с транслокациями и другими хромосомными аномалиями.

Этим методом была установлена локализация гена фосфоглицераткиназы в длинном плече Х-хромосомы, т.е. место гибридных клеток позволяет установить:

1) локализацию гена

2)сцепление генов

3)картирование хромосом

Свыше 160 локусов определены с помощью метода гибридных соматических клеток.

Онтогенетический метод

Позволяет изучить закономерности проявления какого-либо признака или заболевания в процессе индивидуального развития. Выделяют несколько периодов развития человека. Антенатальный (развитие до рождения) и постнатальный. Большинство признаков человека формируются в фазу морфогенеза антенатального периода. В фазу морфогенеза постнатального периода заканчивается формирование коры головного мозга и некоторых других тканей и органов, формируется иммунологическая система организма, которая достигает наивысшего развития через 5-7 лет после рождения ребенка. В постморфогенетический период развиваются вторичные половые признаки.

В морфогенетический период изменение активности генов происходит по двум типам:

1) включение и выключение генов

2) усиление и ослабление действия генов

В постморфогенетический период развития первый тип изменения активности генов почти отсутствует, происходит лишь небольшое включение отдельных генов – например, генов, определяющих вторичные половые признаки, развитие некоторых наследственных заболеваний. Выключение же генов в этом периоде более значительное. Репрессируется активность многих генов, связанных с выработкой меланина (в результате происходит поседение), а также генов, связанных с выработкой γ-глобулинов (повышается восприимчивость к заболеваниям). Подавляются многие гены в клетках нервной системы, мышечных клетках и т.д.

Репрессия генов осуществляется на уровне транскрипции, трансляции, посттрансляции. Однако основной тип изменения активности генов на этом этапе – усиление и ослабление действия генов. Может изменяться доминирование генов, что вызывает изменение внешних признаков, особенно в период полового созревания. Меняется соотношение половых гормонов и соответственно признаки пола. Репрессивные гены с возрастом могут оказывать большое влияние на развитие того или иного признака. Например, ген фенилкетонурии в гетерозиготном состоянии изменяет психику человека.

Популяционно-статистический метод исследования

Представляет собой метод математического подсчета тех или иных генов и соответствующих признаков в определенных популяциях. Теоретической основой данного метода является закон Харди-Вайнберга.

Этим методом установлено, что все гены человеческой популяции по частоте встречаемости можно разделить на 2 категории:

1) имеющие универсальное распространение, к которым относится большинство генов. Например, ген дальтонизма, имеющийся у 7%мужчин и более чем у 13%женщин. Ген амавротической идиотии, встречающийся у населения Европы с частотой 4 на 10 000 населения.

2) гены, встречающиеся преимущественно в определенных районах. Например, ген серповидно-клеточной анемии распространен в странах, где свирепствует малярия. Ген врожденного вывиха бедра, имеющий высокую концентрацию у аборигенов северо-востока нашей страны.

Метод моделирования

Закон гомологических рядов Н. И. Вавилова (виды и роды генетически близкие обладают сходными рядами наследственной изменчивости) позволяет с определёнными ограничениями экстраполировать экспериментальные данные на человека.

Биологическая модель наследственного заболевания на животном часто является более удобной для исследования, чем больной человек. Оказалось, что у животных имеется около 1300 наследственных болезней, так же, как у человека. Например, у мышей – 100, у крокодилов – 50, у крыс – 30. на модели гемофилии А и В у собак показано, что она обусловлена рецессивным геном, расположенным в Х-хромосоме.

Моделирование мышечной дистрофии у мышей, хомяков и кур дало возможность понять патогенетическую сущность этого заболевания. Было установлено, что при этом заболевании поражается не нервная система, а непосредственно мышечные волокна.

Начальные механизмы галактоземии были выяснены на модели кишечной палочки. И у человека, и у бактерий неспособность усваивать галактозу вызвана одинаковым наследственным дефектом – отсутствием активного фермента – галактоза-1-фосфатилуридилтрансферазы.

Иммунологический метод исследования

Этот метод основан на изучении антигенного состава клеток и жидкостей человеческого организма – крови, слюны, желудочного сока и т.п. Чаще всего исследуют антигены форменных элементов крови: эритроцитов, лейкоцитов, тромбоцитов, а также белков крови. Различные виды антигенов эритроцитов образуют системы групп крови.

В начале ХХ столетия К. Ландштейнер и Я. Янский показали, что в зависимости от характера реакций между эритроцитами и плазмой крови, всех людей можно разделить на 4 группы. В дальнейшем было доказано, что реакции эти происходят между белковыми веществами эритроцитов, которые были названы агглютино-генами, и белками сыворотки крови, которые были названы агглютининами.

Группы крови определяются антигенами, содержащими липидную и белковые фракции, и которые находятся на поверхности эритроцитов. Белковая часть антигена контролируется геном, который работает на ранних этапах развития эритроцита. Антигены специфичны для каждой группы крови.

Всего сейчас известно 14 систем эритроцитарных групп крови, в которые входят более 100 различных антигенов. В системе групп крови АВО на поверхности эритроцитов формируется два антигена под контролем генных аллелей I а, I в.

Бернштейн в 1925 году показал, что есть третья аллель I о, которая не контролирует синтез антигена. Таким образом, в системе АВО групп крови существует три аллеля, но у каждого человека имеется только два из них. Если расписать возможные мужские и женские гаметы в решетке Пеннета, то можно проследить, какие возможные комбинации групп крови будут у потомков.

Группы крови АВО у потомков в зависимости от групп крови у родителей

Иммунологические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные состояния (агаммаглобулинемия, дисгаммаглобулинемия, атаксия-телеангиэктазия и другие), при подозрении на антигенную несовместимость матери и плода, при пересадке органов и тканей, при установлении истинного родства, в случаях медико-генетического консультирования, при необходимости изучения генетических маркеров при диагностике сцепления генов или при определении наследственной предрасположенности к заболеваниям, при установлении зиготности близнецов.

Определение групповой принадлежности крови имеет практическое значение в разнообразных генетических исследованиях:

1) при установлении зиготных близнецов

2) при установлении сцепления генов.

3) в судебно-медицинской экспертизе в случаях спорного отцовства или материнства. Известно, что у ребенка не могли появится антигены, которых нет у родителей.

Система групп крови М была открыта К. Ландштейнером и И. Левиным в 1927 году (в этой группе антитела к соответствующим антигенам не продуцируются). В системе имеется два аллеля M,N.

Гены, определяющие фактор М и N, являются кодоминантными, т.е. если встречаются вместе, то оба и проявляются. Таким образом, существуют гомозиготные генотипы MM и NN, и гетерозиготные MN. В популяциях европейцев генотипы ММ встречаются примерно в 36%, NN – в 16%, MN – в 48%.

А гены соответственно:

М=36 + 48/2 = 60%

N=16 + 48/2 = 40%

Резус-фактор

Как показали исследования ученых, 85% европейцев имеют эритроцитарный антиген, общий с антигеном обезьян вида макака-резус. У 15% людей резус-антигенов на поверхности эритроцитов нет.

Система групповых резус-антигенов очень сложна. Предполагается, что резус-антигены контролируются тремя тесно сцепленными локусами С, Д и Е в двух хромосомах и наследуются доминантно. Поэтому возможны по каждому локусу три генотипа: гомозиготные резус-положительные, гетерозиготные резус-положительные и гомозиготные резус-отрицательные.

Наиболее иммуногенным является антиген Д. Антигены С и Е являются менее активны.

В 1962 году было установлено наличие эритроцитарного изоантигена Х д, передающегося через половую Х-хромосому. По этому антигену всех людей можно разделить на Х д -положительных и Х д -отрицательных. Среди Х д -положительных женщин встречается 88%, а среди мужчин – 66%. Если оба родителя Х д -отрицательны, то все их дети (как девочки, так и мальчики) будут Х д -отрицательны. Если отец Хд-положительный, а мать Х д -отрицательна, то их дочери будут Х д -положительными, а сыновья Х д -отрицательными. Если мать Х д -положительна, а отец Х д -отрицателен, то их сыновья будут Х д -положительными т.е. тип наследования «крест-накрест». Дочери же могут быть как Хд-положительными, так и Х д -отрицательными, в зависимости от гомозиготности матери. Ген Х д – группы локализован в коротком плече Х-хромосомы. Система Х д используется для изучения анеуплоидий (аномального числа Х-хромосом у ребенка с трисомией Х, синдрома Клайнфельтера, синдрома Шерешевского-Тернера и др.). Предполагается, что Х д -несовместимость матери и плода (мать Х д -отрицательная, а плод Х д -положительный) приводит к уменьшению частоты рождения девочек.

Биохимический метод

Позволяет, с одной стороны, изучить количество ДНК в клетках человека в норме и патологии, с другой – определять наследственные дефекты обмена веществ при помощи:

1) определения аномального белка (структурных белков или ферментов), которые образуются в результате биохимических реакций;

2) определения промежуточных продуктов обмена, которые появляются вследствие генетического блока прямой реакции обмена.

Например, при фенилкетонурии аминокислота фенилаланин не превращается в тирозин. Происходит увеличение её концентрации в крови и уменьшение концентрации тирозина. Фенилаланин при этом превращается в фенилпировиноградную кислоту и ее производные – фенилмолочную, фенилуксусную и фенилацетилглутаминовую.

Эти соединения обнаруживают в моче больного при помощи хлорного железа FeCl 3 или 2,4 – динитрофенилгидразина.



Изучение родословной осуществляется человеком с древнейших времен. В 18-19 веках достаточно широко начал применяться анализ людской патологии (заболеваемости). Таким образом, начал формироваться генеалогический Впоследствии происходило усовершенствование как линии составления родословных, так и линии поиска вариантов статистического анализа имеющихся данных.

Клинико-генеалогический метод - это способ исследования родословных, использование которого позволяет проследить распределение патологии в роду или семье при указании типа родственных отношений между их членами.

Этот вариант изучения считается универсальным. Генеалогический метод используется в решении проблем теоретического характера достаточно широко. В частности, данный способ исследования применяют при:

Установлении у признака характера наследственности;

Определении вида наследования заболевания или признака;

Оценке пенетрантности (частоты проявления) гена;

Анализе процесса картирования (определения положения гена относительно прочих на хромосоме) и сцепления генов;

Исследовании интенсивности процесса мутации;

Расшифровке механизмов, на которых основано взаимодействие генов.

В современной медицине известно достаточно большое количество генетических патологий. Именно поэтому разработана программа по исследованию каждой беременной женщины на шесть К ним относят:

Фенилкетонурию;

Андрогенитальный синдром;

Галактоземию;

Муковисцидоз.

Генеалогический метод может являться в некоторых случаях единственным способом, при использовании которого можно определить вид наследования заболевания в семье, выяснить природу патологии, оценить прогноз недуга, провести дифференцированный диагноз с прочими Кроме того, применение данного исследовательского варианта позволяет рассчитать вероятность рождения больных детей, а также подобрать адекватные и целесообразные мероприятия по дородовой диагностике, профилактике, лечению, адаптации и реабилитации.

Генеалогический метод предполагает составление родословной и ее графического изображения.

В ходе данных мероприятий осуществляется о пробанде (индивиде, изучением которого занимается специалист) и его семье. Как правило, исследования проводятся с пациентом или носителем изучаемого признака. Однако генеалогический метод может быть использован не только в медицине.

В одной родительской паре дети называются сибсами (братья и сестры). При наличии только одного родителя - полусибсами. Они могут быть единокровные (с общим отцом) или единоутробные (с общей матерью).

Как правило, составление родословной осуществляется с целью изучения нескольких (или одного) заболеваний (признаков). Объем информации может зависеть от количества поколений, вовлеченных в нее (родословную).

Анализ полученных сведений предполагает при выявлении видов наследования учет ряда особенностей.

Так, например, на аутосомно-доминантный тип указывает частое выявление признака в родословной (почти в каждом поколении), у мальчиков и девочек одинаково часто. Присутствие признака у одного из родителей способствует появлению его у половины или всего потомства.

При составлении родословных каждое поколение должно располагаться на своей горизонтали или радиусе. Нумерация поколений осуществляется римскими, а членов семей - арабскими цифрами.

При наличии в семье нескольких наследственных заболеваний, между собой несвязанных, для каждой патологии родословная составляется отдельно.